Sunday, 10 July 2016

Topic 2: Arithmetic and Geometric Progression


Arithmetic Progression


Arithmetic Progression (AP) is difference between one term and the next is a constant, other words is, just add same value.


Example of Arithmetic Progression:

Example 1:

AP is to find common different is subtract:

   First (1) term – Second (2) term

   Second (2) term – First (1) term =1

So,       1+1 = 2
            2+1 = 3
            3+1 = 4
            4+1 = 5
The constant by adding (+1) to next no.

Example 2:

Find the sum of the first 10 terms for the series that we met above: \displaystyle{4},{7},{10},{13},\ldots

a= 4
\displaystyle{d}={3}
\displaystyle{n}={10}
\displaystyle{S}_{{n}}=\frac{n}{{2}}{\left[{2}{a}_{{1}}+{\left({n}-{1}\right)}{d}\right]}=\frac{10}{{2}}{\left[{2}\times{4}+{9}\times{3}\right]}={175}

2/n [2a+(n-1)d]

[2×4+9×3]

=175


Example 3:

Find the sum of the first \displaystyle{1000} odd numbers.

In this case, we have \displaystyle{a}_{{1}}={1}\displaystyle{d}={2} and \displaystyle{n}={1000}.
So, using the formula:
\displaystyle{S}_{{n}}=\frac{n}{{2}}{\left[{2}{a}_{{1}}+{\left({n}-{1}\right)}{d}\right]}

2/n [2a+(n-1)d]

the sum 
\displaystyle{1}+{3}+{5}+\ldots for 1000 steps is given by:


\displaystyle{S}_{{1000}}=\frac{1000}{{2}}{\left[{2}{\left({1}\right)}+{\left({1000}-{1}\right)}{\left({2}\right)}\right]}={1}\ {000}\ {000}[2(1)+(10001)(2)]=1 000 000




AP have 2 types formula:


            1] to find any term
           n th term Tn
          = a + (n-1)d


           2] to find sum term
          Sn = n/2 [2a + (n-1)d] or Sn = n/2 [a + 1]



SEE THIS VIDEO! (learn something from this video).....






SOLVE THIS QUESTIONS?

1.      Find the number of terms in the following Arithmetic sequence
T= a + (n-1) d

a)     2,5,8…299
a=2
d=3

b)     2,4,6…246
a=2
d=2


2.      In an AP, the 24th term is 122 and common different is 3, find the 5 series

122= a + (23)3

                                122=a +69…continue to answer…



3.      The first 20 terms of the of series 24+3,27,30,33..

Sn= n/2 [2a+(n-1)d]
a=24

d=3





Geometric Progression



Geometric Progression (GP) Sequence of numbers where the ratio between any two adjacent numbers is constant.



Example of Geometric Progression:



Example 1:

2,4,8,16,32,64,128,256…
This sequence has a factor of 2 between each number.
Each term (except the first term) is found by multiplying the previous term by 2. 


In General we write a Geometric Sequence like this:
{a, ar, ar2, ar3, ... }
where:

  • a is the first term, and
  • r is the factor between the terms (called the "common ratio")

Example 2:

{1,2,4,8,...}

The sequence starts at 1 and doubles each time, so
  • a=1 (the first term)
  • r=2 (the "common ratio" between terms is a doubling)
And we get:
{a, ar, ar2, ar3, ... }
= {1, 1×2, 1×22, 1×23, ... }
= {1, 2, 4, 8, ... }
But be careful, r should not be 0:
               *When r=0, we get the sequence {a,0,0,...} which is not geometric


    Example 3: 
    xn = ar(n-1)
    (We use "n-1" because ar0 is for the 1st term)
    10, 30, 90, 270, 810, 2430, ...
    This sequence has a factor of 3 between each number.
    The values of a and r are:
    • a = 10 (the first term)
    • r = 3 (the "common ratio")

    xn = 10 × 3(n-1)
    So, the 4th term is:
    x4 = 10×3(4-1) = 10×33 = 10×27 = 270
    And the 10th term is:
    x10 = 10×3(10-1) = 10×39 = 10×19683 = 196830

    Formula of Geometric Progression:



            1) nth term T= arn-1

           2) Sn = a(1-rn)/1-r or Sn = a(rn – 1)/r-1

            3)  S∞ = a/1-r



          




    SOLVE THIS QUESTIONS?



    1.      What is the eleventh term of Geometric Sequence
    3,10,12,24…?

    Tn=ar n-1 (11-1=10)

    a=3
    r=2


    2.      What is the sum of the first eight terms of the geometric sequence 5, 15, 45, ... ?
    Sn = a(1-rn)/1-r


    5, 15, 45, ... 
    This sequence has a factor of 3 between each pair of numbers.

    The values of a, r and n are:
     a = 5 (the first term) 
    r = 3 (the "common ratio")
    n = 8 (we want to sum the first 8 terms)


    No comments:

    Post a Comment